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Abstract. Decoupled parallel mechanisms (PMs) are needed for devices with
simpler and more intuitive adjustment capability. Currently, the design of fully-
decoupled PMs is mostly based on linear structures. This paper considers decou-
pled PMs with a non-linear structure with locally decoupled outputs for a certain
range. The goal of this paper is to present an evaluation method for the decoupling
performance. As an example, the method is applied for the evaluation of the de-
coupled motion performance of a non-linear PM based on a planar 5R (five-bar)
mechanism. In the method, sensitivity vectors that are based on velocity influence
coefficients are used to investigate local decoupling conditions. A local cross-talk
measure is proposed and applied for finding the best alignment of the mechanism
for minimal total cross-talk for the given workspace.
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1. Introduction

In the high-tech semiconductor industry, high precision and high speed are prominent
concepts. Lithography machines depend on adjustable mounts which are used for align-
ment of optical components and inspection. Even though there are some motorized mech-
anisms, during installation the adjustments of the mounts are done manually [1]. Due to
the coupled structure of the mounts, currently the adjustments cannot be done per one
single degree of freedom (DOF) independently, making it a challenging task. Decoupled
mounts therefore would be a significant improvement. A mechanism is called fully de-
coupled if each output parameter depends on only one single input parameter. As a re-
sult, they have simpler and more intuitive control [2]. In kinematic synthesis methods,
decoupled mechanisms can be designed with serial or parallel architectures. When com-
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pared to the serial counterparts, parallel mechanisms (PMs) have better characteristics in
terms of accuracy, stiffness and payload [3].

In literature, different types of fully decoupled PMs can be found. Kong and Gos-
selin proposed decoupled PMs which have 2T, 2R1T and 3T1R (T: translational, R: rota-
tional) motions by using the leg-surface method [4]. Considerable work has been done on
fully decoupled 3T-type PMs by different authors [5–9]. Gogu proposed many uncoupled
PMs that vary from 2 to 4-DOF by using linear transformations [10–12]. In the design of
those PMs, the most common way of obtaining decoupled motion is to use orthogonali-
ties between legs and/or between actuators. Also, those structures are designed in such a
way that the kinematic relation between one single input and output is independent from
others. In other words, their structures are linear. The main advantages of this approach
consists of having a modular synthesis procedure and having kinematically exact decou-
pled outputs without cross-talks. However, linear structures generally have some disad-
vantages like large volume and loss of rigidity due to poor payload distribution among
the legs. On the other hand, non-linear structures can be another option for decoupled
mechanisms. Such mechanisms are locally decoupled in certain configurations [13] and
they can be used in the applications where relatively small workspaces are needed.

With a non-linear mechanism, the degree of coupling of the output of the mechanism
is different in each point of workspace. In addition, structural parameters and workspace
dimensions affect the overall amount of coupling. The decoupling is evaluated by a per-
formance index which are mostly based on the condition number and is used to represent
the dexterity of the mechanism and the closeness to a singularity in a specific pose [14].
When the condition number is equal to 1, the mechanism is called isotropic which means
that the mechanism has identical kinetostatic properties in all the directions. However,
in terms of decoupled motion performance, the condition number has no clear mean-
ing [15].

The goal of this study is to propose an evaluation method for the decoupled motion
performance of non-linear PMs. As an evaluation method, the sensitivity vectors based
on the velocity influence coefficients of Jacobian matrix are to be used and local decou-
pling conditions are discussed. Then, a local cross-talk measure is proposed and applied
to a pose to find the best alignment of the mechanism for the minimum total cross-talk
for a given workspace. For this paper, a planar 5R five-bar mechanism is used as the case
for a non-linear PM. Thus, this paper is limited to an evaluation method for a five-bar
mechanism. Lastly, a general evaluation procedure for the five-bar mechanism is given.

In Section 2, the forward kinematic analysis of a five-bar mechanism is given. Sec-
tion 3 presents the cross-talk measure formulation and the evaluation procedure for a
five-bar mechanism. In Section 4, the performance evaluation is carried out for the five-
bar mechanism and some discussions are made. Section 5 concludes the paper.

2. Forward Kinematic Analysis of a Five-bar Mechanism

A non-linear PM for decoupled motions, by definition, needs to have at least two different
input-output relationships. Practically, this corresponds to a mechanism with at least two
inputs and two outputs. A planar five-bar (5R) mechanism can be a suitable candidate
for such a mechanism. It is a single-loop mechanism and two active joints as inputs are
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Figure 1. Kinematic diagram of a five-bar mechanism.

needed to control it for normally constrained control. The kinematic diagram of a five-
bar mechanism is given in Figure 1. The rotations of the revolute joints in A0 and C0

are selected as the two input parameters and as the two output parameters the X and Y
position of the joint in B are choosen.

In the forward kinematic analysis, the two input joint angles θ2 and θ5 are given,
from which the position of joint B can be found. Analytical derivation of the direct equa-
tions can be accomplished by using the method of intersection of two circles [16], with
which the position of point B is found by Eqs. (1) and (2). The forward kinematic sin-
gularities are presented in [17] and occur in the pose where links AB and BC become
collinear.
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Figure 2. The position-level mapping from (a) the input space to (b) the output space of the five-bar mechanism
with a11 =−a12 =−0.50, b11 = b12 =−2.25, a2 = a5 = 1.00, a3 = a4 = 1.71 and α = 0◦ for the input ranges:
80◦ < θ2 < 160◦ and 20◦ < θ5 < 100◦. The isolines show the effect of changing one input at a time with the
curvature indicating the level of cross-talk.

The whole mechanism can be rotated by the angle α about O point to align the output
space of the mechanism with the orthogonal XY -frame. In that case, the new coordinates
of point B can be found as xB = XB cosα−YB sinα and yB = XB sinα +YB cosα .

In Figure 2, an example of position-level mapping from input space to output space
is given with discrete point sets and isolines for a five-bar mechanism. Without loss of
generality, the length of the fixed link |A0C0| is assumed 1 and the structural parameters
are selected as: a11 =−a12 =−0.50, b11 = b12 =−2.25, a2 = a5 = 1.00, a3 = a4 = 1.71
and α = 0. The input ranges are as follows: 80◦ < θ2 < 160◦ and 20◦ < θ5 < 100◦. In
Figure 2.a, the input space is given as a square grid with equidistantly placed working
points which define the pose of the mechanism. In this grid, the horizontal lines corre-
spond to changing θ2 while keeping θ5 constant and it is visa-versa for the vertical lines.
Figure 2.b shows the output space which is a warped grid. Moving along the isolines in
the input space results in a curvilinear motion in the output space which is cause by the
cross-talk effects. For a fully-decoupled mechanism without cross-talk effects, the iso-
lines in the output space have to be straight as well and the lines for both motions must
also be crossing each other perpendicularly throughout the workspace.

3. Cross-talk Formulation and the Evaluation Method for the Decoupled Output
of a Five-bar Mechanism

Kineostatic analysis of parallel mechanisms depends on the Jacobian matrix which ex-
presses the mapping between the input and output velocities. In Eq. (4), ~̇θ and ~̇u are
the input and the output velocity vectors, respectively, and J is the Jacobian matrix
which is a function of the input parameters. The jacobian matrix of the mechanism is
given in Eq. (5). In this equation, J11 = ∂xB/∂θ2, J12 = ∂xB/∂θ5, J21 = ∂yB/∂θ2 and
J22 = ∂yB/∂θ5 are the velocity influence coefficients. For a fully-decoupled mechanism,
the Jacobian matrix is a diagonal matrix because the off-diagonal element: J12 and J21 de-
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fine the cross-talks which are zero. For a five-bar mechanism, these terms are in general
non-zero due to the fact that the mechanism is essentially coupled.

~̇u = J(θ)~̇θ (4)
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It is known that the velocity influence coefficients can be defined as sensitivity vec-
tors to represent the curvilinear isolines in the position-level output space. Therefore,
for each workspace point, there are two sensitivity vectors which are related to the col-
umn vectors of the Jacobian matrix: ~Jθ2 = [J11 J21]

T and ~Jθ5 = [J12 J22]
T . They give the

information of how the output motion is changed by the input θ2 and θ5, respectively.
Therefore, the effect of each input on the output motion can be investigated separately
by using these sensitivity vectors. For an ideal decoupled output case, these vectors are
perpendicular to each other and each perpendicular vector set is aligned with the orthog-
onal frame throughout the workspace [18]. To investigate that for a five-bar mechanism,
the angle ψ between the two sensitivity vectors is calculated as in Eq. (6). In the spe-
cific points in the output space where ψ is equal or close to 90◦, the alignment of the
sensitivity vectors with the orthogonal XY -frame can be accomplished by changing α .
At that point, a cross-talk measure is needed to determine which alignment results in the
minimum cross-talk. So, a local cross-talk measure based on the cross-talk terms J12 and
J21 for a given α can be constructed. However, these cross-talk terms cannot reflect the
effective level of cross-talk by themselves because J11 and J22 also change throughout
the workspace. Therefore, the effect of the cross-talk terms can be measured if they are
compared with the amount of output motion obtained as a result of given inputs. This
comparison can be done in different ways depending on the task requirement. In Eq. (7),
a local cross-talk measure is defined. In this equation, the cross-talk terms are normal-
ized by the amount of output motion represented by J11J22. Also, two cross-talk terms
are squared assuming that negative and positive cross-talks are equally unwanted. When
K increases, the deviations of the isolines from the orthogonal axes are also increased.

For the evaluation procedure for the given five-bar mechanism, firstly, the sensitiv-
ity vector map is obtained for a large output range to get an overall idea and to detect
the regions where ψ = 90◦. Then, one of the poses corresponding to those regions is
used as the initial pose for another investigation of a small output range to be used as
the workspace of the mechanism. For the latter investigation, for different angles α , the
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Figure 3. (a) The five-bar mechanism (in black) with a11 =−a12 =−0.50, b11 = b12 =−2.25, a2 = a5 = 1.00,
a3 = a4 = 1.71 and α = 0◦ at home position. The mechanism in grey shows the pose when ∠ABC = 90◦ and
(b) The corresponding sensitivity vector map with the contour ψ for the input ranges: 80◦ < θ2 < 160◦ and
20◦ < θ5 < 100◦.

values of the local cross-talk are calculated by Eq. (7) for each workspace point and then
they are summed to find the total value of cross-talk for the given workspace. Finally, the
minimum total cross-talk amount and the corresponding alignment of the mechanism are
found for a specific α .

4. Performance Evaluation for the Decoupled Output of a Five-bar Mechanism

For overall evaluation, the same input intervals are used as in Section 2. The mechanism
is depicted in Figure 3.a at home position. The output space of this mechanism is given
in Figure 3.b together with the corresponding sensitivity vector map. The black and the
blue arrows represent ~Jθ2 and ~Jθ5 , respectively. The dashed contour lines show ψ . As can
be seen, ψ increases from 30◦ to 115◦ as going from top to bottom. The red curve shows
where ψ is 90◦. As going from left to right, the sensitivity vector sets rotate counter-
clockwise. Also, the more ψ deviates from 90◦, the curvier the isolines become. For a
five-bar mechanism, it can be easily seen that ψ is directly related to the angle between
links AB and BC. The red contour also shows the output locations where ∠ABC = 90◦.
In other words, when AB and BC links are perpendicular to each other, the sensitivity
vectors are also perpendicular to each other as well. Hence, the home position of the
mechanism should be selected on the red curve to have the most straight isolines. So,
the pose corresponding to the middle point of the red curve is chosen as the new home
position, which is illustrated in gray in Figure 3.a. The corresponding input parameters
for this pose are θ2 = 135◦ and θ5 = 45◦.

To investigate the new pose in detail, smaller input intervals are chosen. In this case,
the the input ranges are given as 125◦ < θ2 < 145◦ and 35◦ < θ5 < 55◦. The specific
workspace with its sensitivity vector map are given in Figure 4. As can be seen, the
isolines are almost straight since ψ deviates less from 90◦. Also, they are approximately
45◦ angled with respect to the orthogonal xy frame. In Figure 5.a, the corresponding
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Figure 4. (a) The five-bar mechanism with a11 = −a12 = −0.50, b11 = b12 = −1.91, a2 = a5 = 1.00,
a3 = a4 = 1.71 and α = 0◦ at home position and (b) The corresponding sensitivity vector map with ψ contour
lines for the input ranges: 125◦ < θ2 < 145◦ and 35◦ < θ5 < 55◦ showing that the isolines are significantly
less curvy.

normalized cross-talk contours for α = 0◦ are given. In that figure, the local cross-talks
increase as moving from left to right because both sensitivity vectors rotate counter-
clockwise. That results in bigger cross-talk terms and smaller transmission ratio terms
for both vectors. As moving from bottom to top, both vectors are getting more aligned
with the horizontal axis. This results in smaller ~Jθ2 and bigger ~Jθ5 . Due to the combined
effect, the local cross-talks do not change much in the vertical direction.

When the local cross-talks are summed for the workspace, as α is changed from
0◦ to -45◦, the total cross-talk amount is decreased from 951 to 1.82 and it is minimum
when α =−45◦ as expected (see Figure 5.b). In this case, the best alignment of the black
and the blue vectors with horizontal and vertical axes is achieved.

The total cross-talk amount for a five-bar mechanism is smaller when the workspace
is smaller for the same link lengths or when the link lengths are larger for the same
workspace dimensions. To compare the five-bar mechanisms with different link lengths
in terms of decoupled output performance, fixed workspace dimensions should be used.
Then, for each five-bar mechanism with different link lengths, the evaluation procedure
presented in this paper can be applied to all possible poses along ψ = 90◦ contour until
the minimum total cross-talk amount is obtained. Thus, the optimum design of which the
total cross-talk amount is acceptable for the task can be found.

5. Conclusion

This paper presented a method for the performance evaluation of the decoupled motion
output of a non-linear parallel mechanism. In the evaluation, the sensitivity vectors based
on the velocity influence coefficients were used to find the conditions for a decoupled
output. Then, a local cross-talk measure was proposed. A planar 5R five-bar mechanism
is evaluated as a case of non-linear PM. The method was applied to a pose to find the
best alignment of the mechanism for the minimum total cross-talk for a given workspace.
It was shown that the five-bar mechanism has relatively small cross-talks in that pose
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Figure 5. The normalized cross-talk contours of the five-bar mechanism for 125◦ < θ2 < 145◦ and
35◦ < θ5 < 55◦ when (a) α = 0◦ and (b) α =−45◦

and for that alignment. The method can also be applied for the comparison of different
five-bar mechanisms.

To extend the evaluation method to other non-linear decoupled PM, the conditions
for calculating cross-talk need to be extended to cover the cases where the sensitiv-
ity vectors are perpendicular to each other but the isolines in the output space are still
curved. Also, in case the inputs and outputs consists of both rotations and translations,
inhomogeneity in units would be an issue. A possible solution is to divide the elements
of Jacobian matrix by a characteristic length. These issues will be investigated as future
work.
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